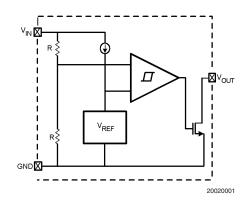
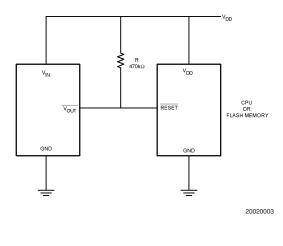
LMS33460 3V Under Voltage Detector General Description

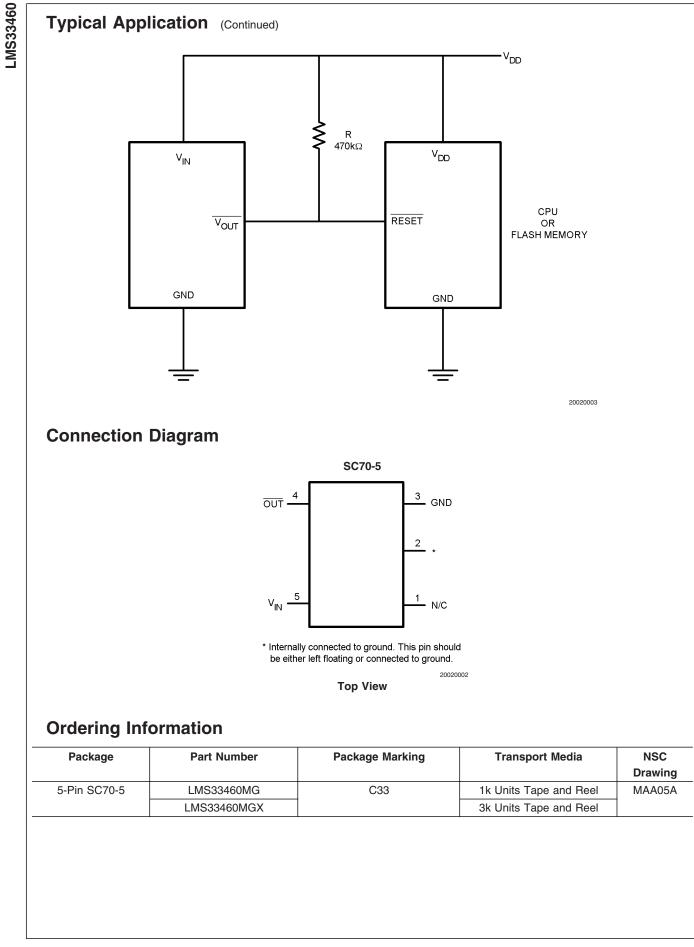
The LMS33460 is an under voltage detector with a 3.0V threshold and extremely low power consumption. The LMS33460 is specifically designed to accurately monitor power supplies. It is especially suited to battery powered systems where low quiescent current and small size are required. This IC generates an active output whenever the input voltage drops below 3.0 Volts.

This part uses a precision on-chip voltage reference and a comparator to measure the input voltage. Built in hysteresis helps to prevent erratic operation in the presence of noise. The UVD is available in the ultra-miniature SC70-5 package.


Features

- Ultra low Power
- 3.0V detection
- V_{IN} Range: 0.8V to 7.0V
- Open drain output
- Ultra-small SC70-5 package
- Extended Temperature range (-40°C to 85°C)
- Ultra Low Quiescent current (1µA typ)


Applications


- Low battery voltage detector
- Power Fail Indicator
- Processor Reset Generator
- Battery Backup Control
- Battery Operated Equipment
- Hand-held Instruments

Circuit Block Diagram

Typical Application

Absolute Maximum Ratings (Note 1)

If Military/Aerospace please contact the Na Distributors for availa

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.		Machine Model	200V
		T _{JMAX} (Note 3)	150°C
		θ _{JA} (Note 3)	478°C/W
Input Voltage to GND	8.0V		
Output Voltage to GND	8.0V	Temperature Range	
Output Continuous Output Current	30mA		
Vapor Phase IR Convection Reflow	240°C	Operating Junction	–40°C to +85°C

Human Body Model

Storage Temperature Range

ESD Rating (Note 4)

Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_1 = 25^{\circ}$ C. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{DET}	Detector Threshold	V _{IN} Falling	2.85	3.0	3.15	V
V _{HYS}	Detector Voltage Hysteresis	V _{IN} Rising	0.095	0.155	0.215	V
I _{IN}	Input Supply Current	V _{IN} = 2.87V	-	1.0	2.2	μA
		V _{IN} = 4.7V	-	1.2	3.6	μA
		V _{IN} = 7.0V (Note 3)	-	25	200	μA
V _{IN(MAX)}	Maximum Operating Voltage		-	_	7.0	V
V _{IN(MIN)}	Maximum Operating Voltage			0.7	1.1	V
	(Note 2)			1.0	1.3	
I _{OUT(LOW)}	Output Current Low	V _{OUT} = 0.05V, V _{IN} = 1.1V	0.01	0.6		mA
		$V_{OUT} = 0.50V, V_{IN} = 1.5V$	2	11		
T _{pdHL}	Output Delay Time					
	Output Transition			70	130	11000
	High to Low		_	70	130	µsec
	$C_L = 10 pF, R_L = 470 k\Omega$					
$\Delta V_{\text{DET}} / \Delta T$	Detect Voltage Temperature		-	±120	-	PPM/°C
	Coefficient					

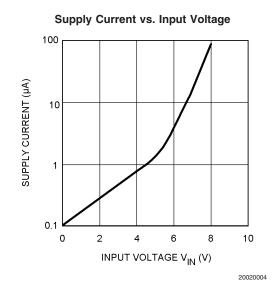
Note 1: Absolute maximum ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.

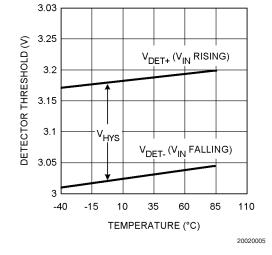
Note 2: Temperature range specifications is guaranteed by design.

Note 3: Quiescent current will increase substantially above 5.5 volts, but is very low in the normal range below 5.5 volts.

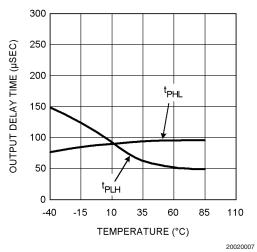
Note 4: Human body model, $1.5k\Omega$ in series with 100pF. Machine model, 0Ω in series with 200pF.

LMS33460


-65°C to +150°C


2500V

LMS33460


Typical Characteristics

 $(T_{A} = 25^{\circ}C, R_{L} = 470 k\Omega \text{ and } C_{L} = 10 pF \text{ unless otherwise noted}).$

Output Delay Time vs. Temperature

Output Current vs. Input Voltage

www.national.com

Detector Threshold vs. Temperature

Application Circuit Information

The LMS33460 is a micro power under voltage sensing circuit with an open drain output configuration, which requires a pull resistor.

The LMS33460 features a voltage reference, a comparator with precise thresholds and built in hysteresis to prevent erratic reset operation.

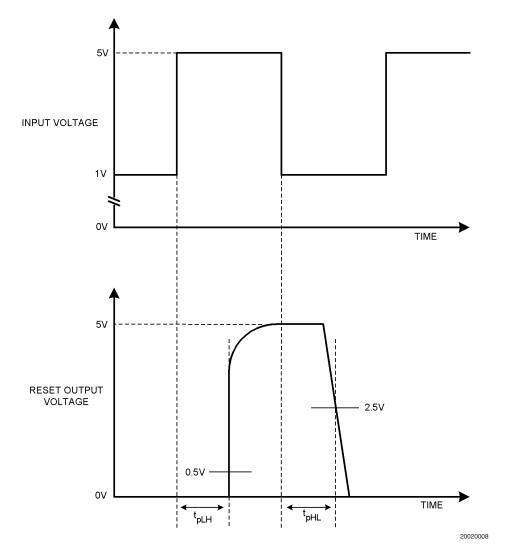
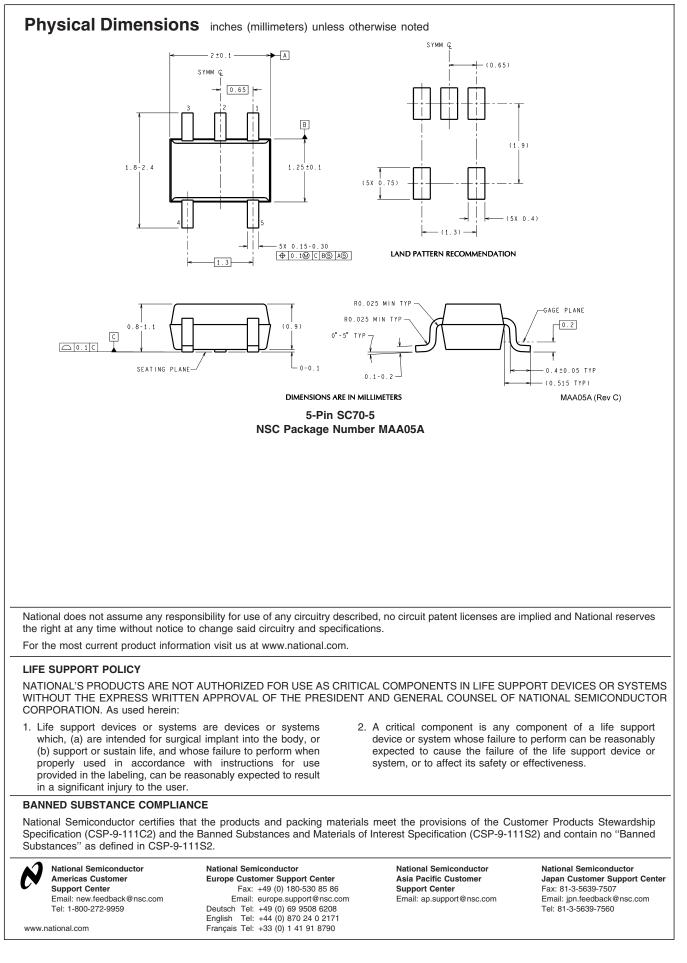



FIGURE 1. Propagation Delay

LMS33460

